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Recently the original theory of Rainich, Misner, and Wheeler (RMW) has been 
shown to have a natural reformulation in terms of a new principal fiber bundle,  
namely the bundle  of  biframes L2M over spacetime. We extend this new formal- 
ism further and show that the original R M W  program can be generalized to 
include Einstein-Maxwell  spacetimes with geometrical sources. The assumptions  
of  a Riemannian connection one-form on the linear frame bundle LM and a 
general connection one-form on L2M necessarily imply the existence of a 
difference form K. A generalization of the s tandard RMW theorem is developed 
which provides the necessary and sufficient conditions on an arbitrary triple 
(M, g, K)  in order for this triple to be an Einstein-Maxwell  spacetime with 
geometrical sources. All sources for the field equations associated with such 
spacetimes are geometrical, as they are constructible from the metric g, the 
difference form K, and their derivatives. The extension of the RMW program 
presented here introduces a second complexion vector, in addition to the s tandard 
R M W  complexion vector, and the formalism reduces, in the special case of no 
sources, to the s tandard R M W  program. 

1. I N T R O D U C T I O N  

The already unified theory of Rainich (1925) and Misner and Wheeler 
(1957) (RMW) provides a geometrization of source-free Einstein-Maxwell 
spacetimes within the standard arena of  four-dimensional Riemannian 
geometry. Indeed, the usual RMW program consists of providing necessary 
and sufficient conditions on an arbitrary four-dimensional Riemannian 
geometry (M, g )in order for this geometry to be a source-free Einstein- 
Maxwell spacetime. However, within the standard arena of Riemannian 
geometry there has never been a method to generalize the RMW program 
to include Einstein-Maxwell spacetimes with sources. 
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The purpose of  this paper is to show that the original RMW theory 
can be extended to include geometrical sources by generalizing the 
geometrical arena from the linear frame bundle L M  to a new principal 
fiber bundle over spacetime, namely the bundle of biframes L2M. The 
differential geometry associated with L 2 M  has recently been developed by 
Hammon and Norris (1990b). A key geometrical development which allows 
this generalization is the introduction of  a difference form K on LZM. We 
show that if the spacetime is space and time orientable, then K exists 
globally; otherwise K always exists locally, and we denote this structure 
by a triple (M, g, K).  A generalization of the standard RMW theorem is 
developed which provides the necessary and sufficient conditions on an 
arbitrary triple (M, g, K)  in order for this triple to be an Einstein-Maxwell 
spacetime with geometrical sources. All sources for the field equations 
associated with such spacetimes are geometrical, as they are constructible 
from the metric g, the difference form K, and their derivatives. This generaliz- 
ation of  the RMW program provides a completely geometrical extension 
of the formalism developed previously by Hammon and Norris (1990a, c). 

As described above, we wish to extend the original RMW program to 
include sources. An Einstein-Maxwell spacetime with sources is any four- 
dimensional Riemannian spacetime (M, g) which satisfies 

( ~  = (f~,f~ * *~ T ~ (1.1) '~ + f , ~ f , ,  ) + ~,, 

V~.f *a" = J~  (1.2) 

V~,f a~' = Jae (1.3) 

where t ~  is the Riemannian Einstein tensor, fa~ is the Maxwell field 
strength, and f*a~ =�89 is the Hodge dual of  f ~ .  The tensor T s 
represents all nonelectromagnetic sources for the Einstein tensor, while jm 
and Je represent magnetic and electric currents, respectively, for the Maxwell 
equations. Note that within this standard formalism the entities T s, J,,, Je, 
a n d f  A~' are all nongeometrical, since they cannot be constructed, in general, 
from the metric g and its derivatives. In the above relations V~ denotes the 
local covariant derivative operator associated with the given Riemannian 
connection. This convention follows Schouten (1953) and we will use his 
notation throughout. Furthermore, we will mainly follow Kobayashi and 
Nomizu (1963) when considering the differential geometry associated with 
fiber bundles. 

The original work of  Rainich (1925) on the algebraic structure of the 
electromagnetic field was the basis of the already unified theory of nonnull, 
source-free Einstein-Maxwell spacetimes as presented by Misner and 
Wheeler (1957). Such spacetimes correspond to relations (1.1)-(1.3) with 
the restrictions T ~ = 0, J,, = 0, and Je = 0, as well as the nonnull electromag- 
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netic conditionf*~f ~ ~ O. The original RMW theory was shown to include 
null electromagnetic fields ( f .  fo~ =0)  as well by Geroch (1966). Since 
the original application to electromagnetic fields, the "Rainich program" 
of geometrization has been developed for other fields as well. These cases 
amount  to relations (1.1)-(1.3) with f,~ = f * ~ =  0, that is, to special forms 
of T '~. In particular, Kuchar (1963) extended the Rainich program within 
the context of  Riemannian geometry to both real and charged scalar fields. 
Moreover, by generalizing the geometrical arena to allow for nonzero torsion 
on the linear frame bundle, Kuchar (1965) was able to geometrize fermion 
fields as well. Recently, again within the framework of Riemannian 
geometry, Coil and Ferrando (1989) extended the earlier works of Taub 
(1963) and McVittie (1956) to provide a geometrization of a thermodynamic 
perfect fluid. 

All of the above programs deal with special cases of the coupled 
Einstein- Maxwell equations with sources, as given in ( 1.1 )-(  1.3 ); however, 
until recently no one has considered a geometrization of these coupled 
equations in their full generality. Hammon and Norris (1990a) showed that 
the original RMW program has a natural reformulation in terms of the 
geometry of  a new principal fiber bundle, namely the bundle of biframes 
L2M. Furthermore, it was shown that the original RMW program could 
be extended to include "Einstein-Maxwell  spacetimes with partially geo- 
metrical sources." The field equations associated with such spacetimes have 
the same form as (1.1)-(1.3) with the following exception: the electric and 
magnetic currents J,, and Je are geometrized in a natural manner in terms 
of the geometry associated with L2M. 

The above program was "partially geometrical" in that it was necessary 
to assume a given nongeometrical, nonelectromagnetic source-stress tensor 
T ~ as in (1.1), and thus a complete geometrization of  the Einstein equation 
was not possible. In this paper we extend the previous formalism in a 
completely geometrical manner in terms of the geometry associated with 
the linear frame bundle LM and the biframe bundle L2M. Indeed, we will 
show using standard decomposition theorems that the assumptions of a 
Riemannian connection one-form on LM and a general connection one- 
form on L2M necessarily imply the existence of a new geometrical difference 
one-form K. This geometrical object will lead to a geometrization of the 
Einstein equation, as in (1.1), including a geometrization of the previously 
nongeometrical T'. 

The fundamental idea which allows the above generalization of  the 
standard RMW program is the introduction of a new geometrical arena, 
namely the principal bundle of  biframes L2M over spacetime. The geometry 
associated with the biframe bundle has recently been developed by Hammon 
and Norris (1990b), and a review of the main features of this fiber bundle 
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appear  in Section 2 of  this paper. As a means to better understand the new 
geometry associated with this bundle, as well as the relations between the 
geometries of  LM and LZM, w e  present the following intuitive discussion. 

The geometry associated with a four-dimensional Riemannian space- 
t ime is usually developed by considering vectors as the fundamental  
geometrical objects on the spacetime. Since the set of  all vectors at a 
spacetime point forms a four-dimensional vector space, a basis (linear 
frame) of  this space thus consists of four independent  vectors. The linear 
frames transform among themselves by elements of  the general linear group 
Gl(4), and the corresponding geometrical arena is the bundle of  linear 
frames LM over spacetime. The linear frame bundle LM is thus the natural 
arena in which to study the geometry based fundamental ly on vectors on 
spacetime. 

However,  f rom a geometrical point of  view, one could equally well 
consider bivectors, or antisymmetric contravariant tensors of  rank two, as 
the fundamental  geometrical building blocks on spacetime rather than 
vectors. The set of  all bivectors at a point of  the four-dimensional spacetime 
forms a six-dimensional vector space, and a basis of  this space thus consists 
of  six independent  bivectors at each point of  the spacetime. Such a basis 
will be called a biframe, and the infinite number  of  biframes at each point 
t ransform among themselves by elements of  G/(6). A new principal fiber 
bundle,  which Norris (1980) called the bundle of  biframes L2M, can now 
be constructed over spacetime. 

The geometry of  the bundle of  biframes L2M is analogous to, but 
distinct from, that on the linear frame bundle LM. The biframe bundle 
supports a soldering form which is a two-form, as compared to the soldering 
one-form on LM. Thus, the corresponding torsion of  a given connection 
one-form on L2M, or bitorsion, is a three-form. We emphasize that the 
bitorsion three-form on LZM is, in general, distinct from the linear torsion 
two-form associated with a given connection one-form on LM. The bitorsion 
structure equation and the associated Bianchi identity will play a central 
role in the geometrization of the Maxwell equations which occurs later in 
this paper. 

As described above, the geometry associated with the frame bundle 
LM is usually distinct from that associated with the biframe bundle LZM; 
however, the vector geometry associated with LM can induce some, but 
not all, of  the bivector geometry associated with L2M. Indeed, a given 
connection one-form o3 on LM can induce a connection one-form o3 on 
L2M, and the associated curvature two-form ~ on LM can induce a 
curvature two-form ~ on L2M. This concept of  induced geometry will play 
a central role in the later formalism and we consider this notion in detail 
in Section 3. 
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An intuitive example of biframe bundle geometry which is induced 
from geometry on the frame bundle, as described above, is the following. 
Assume a Riemannian connection one-form on L M  and let s: U ~  LM, 
U c_ M, be a local section of LM. The components of the pullback of the 
Ricci identities for a bivector A from LM to M in the local section s of 
L M  can be written as 

V[uV~A~ - !~_~ ,~  A _ ~'~ - 2 ~  1 , ~ ,  . . . .  ~ R ~ A ~ , , , )  (1 .4 )  

where /~ = s*h  is the Riemannian curvature tensor on M. 
These identities can be rewritten in the form 

i~o4~ A 

where we have defined 

~ _ 1(1~0 .~49 ~q5 0 "0 q~ "q~ 0 R . . ~  - 5 t " . ~ ' ~  - R..~6~ - R.~83~, + R~83:,) (1.6) 

The curvature tensor /} given in (1.6) is a local biframe curvature tensor 
which is induced by the Riemannian curvature tensor/~. Indeed, the Rieman- 
nian connection one-form o3 on LM induces a connection one-form o3 on 
L2M, and the corresponding curvature two-form I~ on LM induces a 
curvature I~ on L2M, where /~ = o-*h is the pullback of the curvature 
two-form 1) from L2M to M in the local section tr of L2M. 

Note that a general connection one-form o) on L2M will not be, in 
general, just the induced connection one-form o~ on L2M, and the corre- 
sponding curvature two-form f~ on L2M will therefore not be the same as 
the induced curvature ~ whose local components appear in (1.6). Given a 
Riemannian connection one-form o3 on L M  and a general connection 
one-form ~o on L2M, we define the difference one-form K on L2M by 
K = oJ - o3, where o3 is the connection one-form on L2M which is induced 
by o3. Furthermore, we denote any four-dimensional spacetime manifold 
M, which has the geometrical structure on L M  and L2M as described 
above, by a triple (M, g, K),  where g is the metric tensor. Further details 
concerning the difference form K are developed in Section 4. 

In this paper we first consider geometrical developments in Sections 
2-4 and follow with physical considerations in Sections 5-9. In particular, 
a sketch of the main geometrical features associated with the bundle of 
biframes is given in Section 2. These geometrical developments are con- 
tinued in Sections 3 and 4 as the notions of induced geometry and the 
natural difference form K are considered in detail. In Section 5 we present 
a review of  the standard RMW theory. The concept of algebraic RMW 
spacetimes is generalized to the bundle of biframes in Section 6 and a 
natural geometrization of  the Einstein equation with sources is also pro- 
vided. In Section 7 it is demonstrated that the biframe bundle is a natural 
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arena in which to formulate the generalized RMW program. The Maxwell 
equations with sources are geometrized via the bitorsion structure equation 
on L2M in Section 8. Furthermore,  an important  theorem related to the 
RMW differential condition also appears  in this section. A generalization 
of  the standard RMW theorem to include geometrical sources is presented 
in Section 9, and it is shown that the new formalism reduces, in the special 
case of  no sources, to the standard RMW theorem. Finally, in Section 10 
we present conclusions and discuss implications for future work. 

2. THE BUNDLE OF BIFRAMES 

Before considering a sketch of the structure of  the biframe bundle [a 
more detailed account can be found in H a m m o n  and Norris (1990b)], a 
sketch of  the standard frame bundle L M  will be given. Assume a four- 
dimensional spacetime manifold M. The frame bundle L M  is a principal 
fiber bundle with structure group G/(4). A point u ~ L M  can be written as 
u = ( p ,  %),  where (e~) is a basis of  T1Mp, with dual basis ( ~ )  [ ~ ( e ~ )  = 
~ ,  a, fl = 1 , . . .  ,4].  The projection ~r: L M ~ M  is defined by ~r(u) =p .  A 
local section (tetrad field) s: U ~  LM, Uc_ M, can be defined as 

s (p)=(p ,e~[p)  

The frame bundle L M  is unique among Gl(4) principal bundles over 
spacetime in that it supports an object called the soldering form 0[see, for 
example,  Trautman (1970) and Norris et al. (1980)]. The soldering form on 
L M  is an R4-valued one-form, that is, 0: T ~ L M ~ R  4 and is defined by 
Ou(X) = ~[d~r(X)]r~ ,  where (r~) is the standard basis of  R 4, u = (p, e~), 
and X c TuLM. The soldering form on L M  is characterized by the following 
properties: 

(a) 0 is an R4-valued one-form on LM. 
(b) R*O = g-~. O, V g c  G/(4). 
(c) O(X) = 0 if and only if d~'(X) = O. 

In (b) the "do t "  denotes the standard action of G/(4) on R 4. 
Given a connection one-form o3 on LM, the curvature and torsion 

two-forms are defined by (Kobayashi  and Nomizu,  1963) 

fi  = 15o3 = a,,5 +o3 ^ o3 (2.1) 

= E)O = dO + ~ ^ 0 (2.2) 

where /~ denotes the exterior covariant derivative with respect to o3. The 
torsion ~) is an N4-valued two-form. Pulled back in a local gauge s ( p ) =  
(p, e~0s]r) of  LM, (2.2) takes the form 

.sOjk = 2(O[.jC~k] F[.jl~l ~ ]  ) (2.3) 
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The biframe bundle L2M is defined over the same four-dimensional 
spacetime manifold M. The associated tensor spaces are the spaces AT2Mp 
of  antisymmetric rank-two tensors at p ~ M. As a vector space, AT2Mp is 
six-dimensional. Let ( t , )  (a = 1 , . . . ,  6) be a basis (a bifrarne) of AT2Mp~ 
The dual basis is denoted by (~-~) and satisfies "ca(tb) = 6~. Since the t~ are 
antisymmetric rank-two tensors (bivectors), they can be written as 

1 a/3 t, 5ta ( G @ e r  er a ~ = - = t~  (G  ^ @), a < / 3  

for (e , )  a basis of  TIM. Further, the t, t ransform, in general, under GI(6). 
That  is, if g ~ G/(6), g = (g~,) (a, b = 1 , . . . ,  6), then a new biframe basis ?o 
can be defined by ?a = tbg]. Since there are six independent  bivectors in 
the biframe, one needs the full G/(6) t ransformation group. 

The biframe bundle L2M is a principal fiber bundle with structure 
group GI(6). A point u ~ L2M can be written as u = (p, G), where (t,)p is 
a biframe at p ~ M. The projection ~-: L 2 M ~  M is defined by 7r(u) =p.  A 
local section or: U -~ L2M, U ~ M, is defined by o-(p) = (p, G Ip) for all points 
p ~ U. The right action of  GI(6) on L2M is defined by Rg: L 2 M ~  L2M such 
that Rgu = u . g  = (p, Gg~), Vg~  GI(6). A connection one-form on L2M is 
a g/(6)-valued one-form with the standard properties of  a connection. 

The biframe bundle does support  a generalized soldering form. 
However,  the striking difference is that this soldering form is a two-form, 
as opposed to the one-form on LM. Let /3 be an R6-valued two-form on 
L2M, that is , /3.:  T~L2M x T~L2M-~R 6, defined by 

/3~(X, Y ) =  "r~(d~(X), dTr( Y))r~ 

for X, Y ~ TuL2M, u = ( p, ta ), and (~'a) dual to (G). Here and in the following 
(r ,)  denotes the standard basis of  R 6. 

The soldering form on L2M has the following properties: 

(a) fl is an R6-valued two-form on L2M. 
(b) R*/3 = g - ' . / 3 ,  Vg ~ G/(6). 
(c) /3(X, Y) = 0  if d~-(X) = 0  and /o r  d ~ ( Y )  =0.  

In (b) the "do t"  denotes the standard action of  GI(6) on ~6. 

Given a connection one-form w on L2M, the curvature of  r is the 
gl(6)-valued two-form defined in the standard way by 

f~ = Dw = dw + w ^ o9 (2.4) 

However,  the bitorsion of  the connection is an R6-valued tensorial three- 
form, defined by 

0 = D/3 = d/3 +~o ^/3 (2.5) 
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The bitorsion and the curvature on LZM satisfy the first and second 
Bianchi identities 

D O  = 12 ^/3 (2.6) 

D f ~ = 0  (2.7) 

Let ~r: U-~ L~M, U ~_ M, be a local section of  L2M with o-(p) = (p, t, [p), 
Vp 6 U. The components  of  the pullback of the curvature take the standard 
form (where F = cr*oJ, R = �89 

b 2(OE~F~? ~ b ,. R ~t~ = + Ft,lciF~l~ ) (2.8) 

Associated objects can be defined by using a biframe (G) and its dual 
( r  ~ to express Lie algebra indices as spacetime indices. For example,  R ~  

O'p - -  n b  a ~ o - p  can be reexpressed as R ~ r  . The local components  of  the 
pullback of the bitorsion (2.5) and the first Bianchi identity (the bitorsion 
Bianchi identity) (2.6) take the forms 

" ~ " 6 ( 2 . 9 )  ,~O~ z, = 0[~-~z,] + F[~lblr~z, ] 

Ot~ (~O)t3~l + , b 1,,~ b a i.[albl(,~O)t3:~] (2.10) = ~ [,~t3 ibl'l-:,s] 

respectively, where ~| = or*| Here and in the following we use a left 
subscript to denote the gauge when needed for clarity. Since the bitorsion 
is a three-form, we define an equivalent one-form by 

where we use the unconventional  factor of  �89 for later convenience. 

3. G E O M E T R Y  ON L2M INDUC ED BY G EOMETRY ON L M  

In general, geometries based on connections on L M  and L2M are .  
completely independent.  However,  we will show below that the geometry 
of  the f rame bundle can influence that of  the biframe bundle in certain 
special cases. In particular, we will describe below the special geometry on 
L2M which is induced by geometry on LM. A relationship is then developed 
in the following section between this special geometry on L2M and geometry 
on L2M which is not induced in this manner.  This relationship ultimately 
leads to a decomposi t ion of the Ricci tensor associated with L2M into two 
tensors, one of  which is the Einstein tensor associated with a Riemannian 
connection on LM. Throughout the remainder of  this paper we will assume 
a Riemannian connection one-form ~ on L M  and a general connection one-form 
~0 on LZM. 

A given connection o~ on L M  can induce a connection o~ on L2M in 
the following manner.  The covariant derivative operator  obeys the following 
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standard relations when it acts on a basis (e~) v with dual basis ( ~ ) p ,  
namely V~et~ =F2r where F ~  are the components of the Levi-Civita 
connection in the basis (e~). Furthermore, it also obeys the standard rules 
for tensor products. Thus, acting on a bivector basis, we obtain 

V ~ ( e ~  ^ ev )  o ,~ o = (SvF~ ~ - 813F~)(e~ ^ e0) 

oo~ e~) (3.1) = F ~ ( e 0  ^ 

* 0o-  The objects F~r are the components of a biframe connection induced by 
the given Riemannian connection on LM. The associated connection 

~ a t ~ ' / ~ , O ( r  a txu  a 

~  satisfies the Kozul type relation V~t~ = F ~  tb. 
Thus, the local components of a biframe connection o3 which are 

induced by those of a connection one-form o3 on LM can be defined by 

~ b _a _ - ~ r  b ( 3 . 2 )  F~o- ta VlxTal3 

The connection will be called the biframe connection induced by the connection 
on LM. 

We note that the existence of such a connection o~ which is globally 
defined on LZM depends on an imbedding of LM(M, G/(4)) into 
L2M(M, G/(6)) as principal fiber bundles [see, for example, Kobayashi 
and Nomizu (1963)]. The author considered this problem (Hammon, 1989) 
and found special cases in which such an imbedding can be accomplished. 
In particular, if the spacetime (M, g) is space and time orientable [see, for 
example, Bleecker (1981)], it is possible to imbed the corresponding ortho- 
normal frame bundle OM(M, Lt+) into the biframe bundle L2M(M, G/(6)), 
where L~+ is the proper Lorentz subgroup of 0(3 ,  1). A second case involves 
a new principal fiber bundle LM(M, GI(4)), which is related to 
LM(M, G/(4)). This new bundle identifies points (p, e~) and (p, -e~)  of 
LM and locally cannot be distinguished from LM. However, the new bundle 
LM(M, G--l(4)) can quite generally be imbedded in L2M(M, GI(6)). Further 
development of  the bundle LM(M, GI(4)) remains a prospect for future 
investigation. However, the general case of  imbedding LM(M, GI(4)) into 
L2M(M, GI(6)) does not appear possible. Thus, when such a connection 
o~ does not exist globally, one may still define such a connection locally as 
in (3.2). 

The induced biframe connection a; leads to a corresponding induced 
~  

biframe curvature whose local components we will denote as R, ,~.  Of 
particular interest in later applications is the associated object 

o 3,8 - -  r9~ b a " /8  



1 1 3 6  Hammon 

o 3"~ 
which is constructible from the F , , ~ .  The biframe curvature /~ which is 
induced from the curvature ~ on LM was discussed in the introduction 
and takes the explicit form given in relation (1.6). As with any biframe 
curvature, the objec t /~  has the index symmetries 

~  ~ [04~] R~,~a = Rb,~][ra ] 

Note that if g ~  are the local components  of  the given metric g on M, a 
bimetric ff induced by g can be defined by ~ r a  =�89 A 
number  of  interesting relations and contractions of  the induced curvature 
/~ can be derived. In particular, we form the "Ricci tensor" of  the induced 
biframe curvature, namely 

---~ ~S "t ~ p. u'y.,5 

= / ~  _�89 = 6 ~  (3.3) 

This particular contraction gives the entire Einstein tensor of  the Riemannian 
spacetime. This relation between the induced biframe curvature and the 
Einstein tensor provides an intimate link between the biframe bundle 
geometry and the standard Riemannian geometry associated with the general 
theory of  relativity. 

4. A F U N D A M E N T A L  DIFFERENCE F O R M  

Some of  the geometry on the biframe bundle can be induced from that 
on the frame bundle. Indeed, we have shown in the previous section that 
a given Riemannian connection one-form o3 on L M  can induce a connection 
one-form 03 on L2M. It is clear, however, that a general connection one-form 
to on L2M need not be induced in this manner.  A precise relation between 
a general connection one-form to on L2M and an induced connection 
one-form 03 on L2M is developed below. 

Given a general connection one-form co on L2M and a connection 
one-form 03 on L2M which is induced by a given Riemmanian connection 
one-form 03 on LM, as described above, we define a difference form K = 
to-03. Following Kobayashi  and Nomizu (1963), we note that K is a 
tensorial one-form on L2M of  type (ad, gl(6)) and it is not difficult to show 
that K is uniquely related to a type (2, 3) tensor field on M. The reader 
should consult H a m m o n  and Norris (1990b) for further details. 

The local components  of  the associated difference tensor K now take 
the form 

K~ a__V b_"~_f~b_"o (4.1) 

Objects associated to K ~  will be denoted in the standard manner  as 
b b a ,,/15 __ 19 a K~.,~ = K~,,z,,~ and K ~  - K , , r ~ t ~  ~. 
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The difference tensor K can be fundamental ly related to the bitorsion 
of  the given connection one-form w on L2M. The local components  of  the 
pullback of  the bitorsion structure equation in a local section o" of  L 2 M  

(see (2.9)] can be recast in a coordinated gauge of L M  as 

K ~,~1 = O t ~ ]  (4.2) 

The above follows from equation (4.1) in conjunction with definition (3.2), 
and it is valid in any coordinated section of  LM.  This fundamental  relation 
between the bitorsion of a given connection one-form on L=M and the 
difference form on L 2 M  will be important  in the later formalism. 

Any difference in connections leads to a corresponding relation be- 
tween the respective curvature tensors [see, for example, Schouten (1954)]. 

3*̀6 Of  particular interest is the associated form of (4.1), namely F~ t~=  
o y ,  6 3*`6 
F ~  + K~t~ , which leads immediately to 

0o _ ~ 0 ~ o +  0h (4.3) 

Here, /~ are the local components  of  the biframe curvature which are 
induced f rom the Riemannian curvature on L M  [see (1.6)], while R are 
the local components  of  a general biframe curvature associated with the 
given connection w on L2M. The tensor P is a new difference tensor which 
is constructed from K and its covariant derivatives. It takes the explicit form 

oe~ _ w  r..o~ v7 vo,~ .,.~,.oe~ r,'~'o _t , .o~ t z ~  (4.4) 

The Ricci tensor of  a general biframe curvature R as given in (4.3) takes 
the form 

R , ~  d ~'~"3.~o~ /~,~13 + p , ~  (4.5) 
"~- ,5  Jt"-.u.u'7`6 = 

where we have used relation (3.3). For later applications we define 

G~ ~ ___a R(~t~) and S~ ~ =a _ p ~ m  

so that the symmetrized part  of  (4.5) takes the form 

G ~tJ = G ~  - S ~ (4.6) 

where we have again used relation (3.3). Here G ~  are the local components  
of  the Einstein tensor associated with the given Riemannian connection 03 
on LM.  

Equation (4.6) gives a precise relation between contractions of  a general 
biframe curvature and the Einstein tensor of  a Riemannian spacetime. The 
tensor S ~t~ can, in some cases, act as a "geometrical  source" for the Einstein 
tensor. As a trivial demonstrat ion of this idea, we note that if G "t~ = 0, then 
(4.6) reduces to ~ - t~=  S,t3. Thus, biframe vacuum spacetimes correspond 
to the Riemannian (frame bundle) Einstein equations with geometrical 
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sources. This type of relation is not new. For example, the decomposition 
of  the generalized Einstein tensor described above is analogous to that 
which occurs in typical U4 theories of gravitation (that is, theories based 
on a metric connection on LM with nonzero linear torsion) [see, for 
example, Hehl et al. (1976)]. However, what is new in the present formalism 
is that the particular decomposition as given in (4.6) uniquely relates the 
Riemannian vector geometry associated with LM with the bivector geometry 
associated with L}M. 

In the following sections we will present a geometrization of the coupled 
Einstein-Maxwell equations with sources within the arena of the bundle 
of  biframes. The new geometrical objects which allow this geometrization 
are the tensor S ~r as given in (4.6), and the local components of the 
bitorsion O ~ ,  as given in (4.2). Both of these objects are built from 
the difference form K, the metric g, and their derivatives. Furthermore, the 
fundamental decomposition of the symmetric part of  the biframe Ricci 
tensor which occurs in (4.6) will be shown to lead to a geometrization of  
the Einstein equation with sources in Section 6. 

We have shown that the assumptions of  a Riemannian connection 
one-form on LM and a general connection one-form on L2M necessarily 
imply the existence, at least locally, of an associated difference form K. 
Throughout the rest of this paper we will denote a four-dimensional spacetime 
manifold M with a Riemannian connection one-form on LM and a general 
connection one-form on L2M by a triple (M, g, K). 

5. THE STANDARD RMW THEORY 

We next recall some basic facts from RMW theory (Rainich, 1925; 
Misner and Wheeler, 1957). A source free Einstein-Maxwell spacetime is 
any four-dimensional Riemannian spacetime which satisfies 

G,~ =f~,f~ + f~ , f~  (5.1) 

~7~f *A~ = 0 (5.2) 

V~f A~ = 0 (5.3) 

where G , .  is the Einstein tensor and f,~ is the Maxwell field strength. 
Furthermore, a nonnull field satisfies f ,  f o r e  O. 

The RMW theory provides a method of  geometrizing such spacetimes. 
The following conditions are both necessary and sufficient for an arbitrary 
four-dimensional Riemannian spacetime (M, g) to be equivalent to a non- 
null, source-free Einstein-Maxwell spacetime: 

6 = 0  (5.4) 
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where 

Got G/3 - 4riot ,uoq~l~.J (5 .5)  

(~o0 >-- 0 (5.6) 

a~ = O~a (5.7) 

In the above relations Go~(~ ~ # 0. 
Nonnull Einstein-Maxwell spacetimes are geometrized in that condi- 

tions (5.4)-(5.8) are purely geometrical relations stated completely in terms 
of g and its derivatives. In particular, the nongeometrical Maxwell field 
strength f ,v  does not explicitly appear in these conditions. This nonappear- 
ance of f,~ in equations (5.4)-(5.8) is a strength of the RMW theory in 
that the conditions can be stated completely in terms of the metric. On the 
other hand, the physical Maxwell field f,~ does not play a fundamental 
geometrical role in the theory. 

Any four-dimensional Riemannian geometry which satisfies (5.4)-(5.6) 
with (3o~(~ ~ # 0  will be called a nonnull algebraic R M W  spacetime 
(ARMW), while (5.7)-(5.8) will be referred to as the RMW differential 
condition. The vector o~, in (5.8) is called the complexion vector. 

The electromagnetic field strength can be recovered in the RMW theory. 
Given an algebraic RMW spacetime, there exist naturally defined geo- 
metrical bivectors ~,~ and its dual * ~:~. The bivector ~,e is the so-called 
extremal Maxwell square root of the Einstein tensor (Rainich, 1925; Misner 
and Wheeler, 1957). 

For ARMW spacetimes, new bivectors E ~  and ~*~ can be constructed 
by a duality rotation, that is, 

E ~  = ~:~ cos a + ~:*~ sin a (5.9) 

E*~ = ~*~ cos a - ~ sin a (5.10) 

The algebraic conditions (5.4)-(5.6) are necessary and sufficient to guarantee 
that the new bivectors E ~  and E*~ for each complexion angle a satisfy 
the quadratic form 

= E,~,E: +E~*~E~*" (5.11) 

as in (5.1). 
Thus, ARMW spacetimes guarantee the quadratic structure (5.1), but 

the Maxwell equations need not be satisfied. The extra condition necessary 
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and sufficient for the source-free Maxwell equations to be satisfied is 
precisely the RMW differential condition (5.7)-(5.8). 

Recall that when the differential condition (5.7)-(5.8) is satisfied, that 
is, when a~ = a~a, the Maxwell equations (5.2) and (5.3) can be written in 
terms of  the extremal Maxwell square root as 

v , ~  *~'~ - (0,~o~)~ :~'~ = 0 ( 5 . 1 2 )  

V,~ ~" + (O.a)~ :*~" = 0 (5.13) 

The relations (5.12) and (5.13) will be called the R M W  extremal f ie ld  
equations. Thus, (5.12) and (5.13) are equivalent to the Maxwell equations 
in that a duality rotation on the bivectors occurring in (5.12) and (5.13) 
will produce the source-free Maxwell equations (5.2) and (5.3). 

6. THE EINSTEIN EQUATION AS AN ASPECT OF BIFRAME 
BUNDLE GEOMETRY 

To extend the original RMW program to include Einstein-Maxwell 
spacetimes with sources, we extend the geometrical arena from four- 
dimensional Riemannian spacetimes (M, g) to triples (M, g, K).  In this 
section we provide a geometrization of the Einstein equation associated 
with Einstein-Maxwell spacetimes with sources. A key step in this geo- 
metrization is to extend the notion of  ARMW spacetimes from the usual 
linear frame bundle L M  to the bundle of  biframes L2M. As motivation for 
this extension, consider the following discussion. 

The Einstein equation associated with an Einstein-Maxwell spacetime 
with sources [see (1.1)] can be written as 

G.,, Tt~ = ( f ,~ . f  ,. * *'~ T s = - , ~ v  " * + f ~ , f ~  )+  ,~ (6.1) 

S Here Tg~ represents the nongeometrical, nonelectromagnetic source stress 
tensor. For example, this part of  the stress tensor for a charged fluid takes 
the form T ~  = ixu,,ut3, where u~ is the four-velocity of the fluid and /z is 
the energy density [see, for example, Synge (1960)]. 

Note that the difference (Gg~ - T ~ )  has the quadratic bivector structure 
which is characteristic of  source-free Einstein-Maxwell spacetimes. That 
is, given any Einstein-Maxwell spacetime with sources, we can write ( G ~  - 
T~)~ = (f,~,f~'~ + f ~ f ~ *  *'~). To extend the notion of ARMW spacetimes to the 
bundle of  biframes, we first note that each (M, g, K)  necessarily implies 
the decomposition [see (4.6)] 

O . .  = d . ~  - S ~  (6.2) 

which has the same general form as described above. 
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A biframe algebraic Rainich spacetime (BAR) is any triple (M, g, K)  
such that the symmetrized portion of the biframe Ricci tensor G~,~ given 
in (6.2) satisfies the following conditions [see (5.4)-(5.6)]: 

G = 0  (6.3) 

f3 ~ I ~  m ~0~ (6.4) G~ G p  : 4va ~,Joo~J 

Goo >- 0 (6.5) 

Furthermore, the spacetime will be referred to as nonnull for GonG ~ # O, 
and null for Go~,G ~ = 0. As in the standard RMW formalism, the algebraic 
conditions (6.3)-(6.5) are necessary and sufficient to guarantee that the 
tensor G,~ can be written in the form 

G ~  = ~ : ~  + ~ * ~  

: f~uf~ + f*~,f*~ (6.6) 

Here, sou,. is now the extremal Maxwell square root of Gu,, with dual * 
and the cobivectors f ~  and f*~ are obtained by a duality rotation [see (5.9) 
and (5.10)] of the extremal fields through a complexion angle a. 

Note that if a triple (M, g, K)  is a BAR spacetime, then it follows from 
the fundamental decomposition of the biframe Ricci tensor as given in (6.2) 
that the Einstein tensor associated with the four-dimensional Riemannian 
geometry necessarily satisfies 

+ f ~ f ~  ) + S~. (6.7) 

Clearly, this is the same form as that given in relation (6ol), where the 
purely geometrical tensor S ~  now plays the role previously played by the 
nongeometrical,  nonelectromagnetic source stress tensor T~,. We refer to 
relation (6.7) as the Einstein equation with geometrical sources. The algebraic 
conditions (6.3)-(6.5) on an arbitrary triple (M, g, K)  are both necessary 
and sufficient to guarantee the form of the Riemannian Einstein tensor as 
given in (6.7). 

7. THE BIFRAME BUNDLE AS A NATURAL GEOMETRICAL 
ARENA FOR THE R M W  T H E O R Y  

The biframe bundle is a natural geometrical arena in which to extend 
the RMW program. The intuitive idea of the construction described below 
is as follows. If one is given a BAR spacetime, then, as discussed in the 
previous section, there exist naturally defined geometrical bivectors, namely 
the extremai Maxwell square root ~,~ of the biframe Ricci tensor and its 
dual c * .  As will be shown below, these bivectors can be used to define 
special sections of L~-M. Furthermore, it will be shown that duality rotations 
correspond precisely to special section changes on the biframe bundle. 
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Thus, to model the RMW problem on the biframe bundle, consider 
the set of all BAR spacetimes. Each such BAR spacetime leads to the 
geometrical bivectors ~:~ and ~:*~. An equivalence class [*~] of sections of 
L2M * can then be defined as follows. Two sections *~, %7 ~[*~:] are 
equivalent if 

, ( ( p )  = (p, (set3 ' _sc,t~ ' ,l.A)p), 8 , 0 ( p  ) = (p, (sc t~ ' _ ~ : , ,  ~A)p) 

Vp~ U, Uc_M 

The (~.A) (A = 3, 4, 5, 6) are, for our purposes, arbitrary cobivectors picked 
to complete the cobiframe. That is, in this construction we will only be 
concerned with the one-two blades, namely, in the first and second cobivec- 
tors of the cobiframe. Any *~c[*~:] will be called an extremal gauge of 
L2M *. The corresponding dual gauge of L2M will be labeled s r. 

Consistent with the above construction, we next define a special gauge 
transformation. Let h: U o  GI(6), U_~ M, be defined by 

/ cos a ( p )  sin a ( p )  / 

h ( p ) = k  S m o ( P ) c o s a ( P ) o  14 ~] (7.1) 

where a:  U ~ R and the above holds for all p e U. The 4 x 4 identity matrix 
14 could be replaced by a general GI(4) matrix. However, again we are 
interested here only in the first and second blades and thus we simplify. 

Given *~ an extremal section of L2M *, a new section *X = *~:. h at a 
point p ~ M has the form *E(p) = (p, ( Z ~ ,  -Z*~,  ~.A)p). Here, E ~  and E*~ 
are precisely a duality rotation of the extremal fields ~:~ and ~:*~ as in (5.9) 
and (5.10). Thus, duality rotations correspond to special section changes 
of L2M *. 

This model, in which the extremal fields are part of a bivector basis 
and duality rotations are special GI(6) transformations on this basis, helps 
to clarify several aspects related to the RMW problem. For example, in 
typical discussions concerning the RMW problem it is usually shown that 
expressions such as ~:~t~( ~ and ~:*t3~ "~ are not duality invariant. From the 
above discussion, *~:(p) = (p, (~c~t~ , -~:*t~, ZA)p) and thus the expressions in 
question are 

(1) _,~t~(1) (7.2) 

. ~ .  (7.3) 

These correspond to components of z ~ z  "~h, and clearly are not invariant 
under GI(6) transformations (Norris and Davis, 1979). 
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8. THE MAXWELL EQUATIONS AS AN ASPECT OF 
B I F R A M E  B U N D L E  GEOMETRY 

Geometrical sources for the Maxwell equations arise in an extremely 
natural manner  in terms of  biframe bundle geometry. Each BAR spacetime 
gives rise to an equivalence class [*~] of extremal sections of L2M *. If *~ 
is any extremal section of  L:M* associated with a given BAR spacetime, 
then the first and second components of the pullback of the bitorsion 
structure equation in the gauge *~ [see (2.9)] can be recast in a coordinated 
section of  LM in the form [for further details see Hammon and Norris 
(1990c)] 

V/,~:@A/x -- .*Ol~u.~AP" -it- r = ~{~A(1) (8 .1)  

V ~  au + ea,s e*a~ + e/3**~ :*~ = ~O *(2) (8.2) 

These relations are referred to as the generalized extremal identities, while 
oe, and/3~, are the generalized complexion vectors. 

Clearly, the generalized extremal identities are a generalization in form 
of the standard RMW extremal field equations which appear in (5.12)- 

,~aaa plays the role of a geometrical source (5.13). Note that the bitorsion e "-" 
in these identities. If the given BAR spacetime is a nonnull spacetime, the 
generalized extremal identities can be solved for the generalized complexion 
vectors. Indeed, using special bivector identities [see, for example, Misner 
and Wheeler (1957)], we obtain 

fG~V~G~'T'I 2(~| .*'J s~,J 
~oe,. = g,A~ I :~oo+GO ~ ~-t GOe, (8.3) Go4, 

fG~.V~G,;] 2(~Oa(1'~*, - ,,aa/2)~ 
d3~ : 4 / ~ -  ~-~ Goe, G oeo .*v, s , , ,  (8.4) 

The above relations are a generalization in form of the single standard 
RMW complexion vector given in (5.8). Note that the generalized com- 
plexion vector _,/3, given in (8.4) does not appear in the standard RMW 
formalism. The new terms which appear in both (8.3) and (8.4) involving 
the bitorsion are due to the geometrical currents which occur in (8.1) and 
(8.2). Lastly, we emphasize that the tensor G~, which appears in (8.3) and 
(8.4) is the biframe Ricci tensor rather than the Riemannian Einstein tensor 
(~,~ which occurs in relation (5.8). The reduction of the generalized com- 
plexion vectors back to the form of the standard RMW complexion vector 
will be discussed in the following section. 

Clearly, the generalized extremal identities which appear in (8.1) and 
(8.2) are more general than the Maxwell equations. However, suitable 
restrictions can be made on these identities such that they reduce to the 
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Maxwell equations with bitorsion sources. These special restrictions are 
precisely a generalization of  the RMW differential condition and they occur 
in the following theorem. 

Theorem 8.1. Assume a Riemannian linear connection on LM, a general 
linear connection on L2M, and assume that the corresponding triple 
(M, g, K )  is also a BAR spacetime. Let * (  be an extremal gauge of L2M * 
corresponding to the given BAR spacetime and let ~: be a corresponding 
dual gauge of  L2M. I f  f =  ~:. h is a new section of L2M [where h is as in 
(7.1)], then in any coordinated section of L M  

if  and only if 

eo~,~ = O,~a and e/3, = 0 (8.5) 

_ , ~ x ( 1 )  
V j  *a'~ - f  ,-, ( 8 .6 )  

V~f A~ = .7| A(2) (8.7) 

Furthermore,  in this case, the first and second components  of  the pullback 
of  the bitorsion Bianchi identity in the gauge f of  LZM [see (2.10)] are 
equivalent to 

Va (.70) a(l ,~ 0 (8.8) 

V4 (.70)'~2' = 0 (8.9) 

A slightly different version of the above theorem appears in H a m m o n  and 
Norris (1990c), and the reader should consult that reference for details of  
the proof. 

The special case in which ~a~ = 0 ~  and ~/3~ = 0 guarantees the form 
of the equations as given in (8.6) and (8.7), and we will refer to these re- 
lations as the Maxwell equations with geometrical sources. These geometrical 
equations follow from the bitorsion structure equation on the biframe 
bundle. Furthermore,  the bitorsion Bianchi identity, under  these same 
restrictions, guarantees conservation of the sources. This result is an analog 
of  the well-known source conservation which occurs in standard general 
relativity. 

The results of  Theorem 8.1 are clearly more general than the standard 
RMW theory in that the standard RMW problem deals only with the 
source-free Maxwell equations. The algebraic structure associated with BAR 
spacetimes in conjunction with the geometrical richness of  the biframe 
bundle has led to Maxwell equations with conserved geometrical sources. 
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9. A N  E X T E N S I O N  O F  T H E  R M W  P R O G R A M  

TO I N C L U D E  S OUR C ES  

The original RMW theory geometrized source-free Einstein-Maxwell  
spacetimes in terms of  the vector geometry of the linear frame bundle LM. 
Indeed, the original program provided the necessary and sufficient condi- 
tions on an arbitrary four-dimensional Riemannian spacetime (M, g) in 
order for this spacetime to be a nonnull, source-free Einstein-Maxwell  
spacetime. 

In this paper  we have shown that the bundle of  biframes is a natural 
geometrical arena in which to reformulate and extend the standard RMW 
program. The assumptions of  a Riemannian connection one-form on LM 
and a general connection one-form on L2M necessarily imply a triple 
(M, g, K) ,  where K is a natural difference form described in Section 4. The 
following is an extension of the original RMW theorem to the bundle of  
biframes and it provides the necessary and sufficient conditions on a 
arbitrary triple (M, g, K )  in order for this triple to be a nonnull Einstein- 
Maxwell spacetime with geometrical sources. 

Theorem 9.1. Assume a Riemannian linear connection on LM, a general 
linear connection on L2M, and assume that the corresponding triple 
(M, g, K)  is also a nonnull BAR spacetime s u c h t h a t  it satisfies relations 
(6.3)-(6.5). Let ~:~ [~] be any extremal gauge of  LZM associated with the 
given BAR spacetime. I f  f =  ~. h is a new section of L2M, [where h is as 
in (7.1)], then in a coordinated section of L M  

if and only if 

Here 

eoe. = 0 .~  and er = 0 (9.1) 

d l x  a, o~ :,tr :g o~ 
= (f .~.f .  + f . . . f .  ) + S~.v 

_ ,Oa(~) V u f  *~" - ./ 

V~.f*" - - . r  ,| 

f G~V,,~x,,) , ;~(1) .~x(2}e,  

r G o6 G ~ 

( f 2 o -  1-y /--2 ot "~ ,~,z ~ g~t A (1 )  L. ~ ~ / h A  (2)  L- 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

Furthermore,  in this case the first and second components  of the pullback 

(9.6) 
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of  the bitorsion Bianchi identity in the section f of  L2M take the form 

V~(~O) ~ - - -  0 (9.7) 

V~, (~| --- 0 (9.8) 

Proof. The main results follow from Theorem 8.1 in conjunction with 
equations (6.3)-(6.6), as well as relations (6.7), (8.3), and (8.4). �9 

Any triple (M,g, K) which satisfies relations (9.2)-(9.4) for some 
sec t ion f  = ~. h (a duality rotated section) of L2M will be called an Einstein- 
Maxwell spacetime with geometrical sources. Clearly, the bitorsion r ' l  acts 
as a geometrical source for the Maxwell equations, while the tensor Sz. 
acts as a nonelectromagnetic, geometrical source for the Riemannian 

*ra~a and S ~  are Einstein equation. As discussed in Section 4, the tensors r ' J  
constructed from the metric g, the difference form K, and their derivatives. 

The results of  Theorem 9.1 are clearly more general than the standard 
RMW theorem, and we discuss the reduction of  this theorem back to the 
standard RMW formalism below. We first note that the formalism introduces 
a second complexion type of  vector d3u as given in (9.6), as well as a 
generalization of  the standard RMW complexion vector ~a~, which appears 
in (9.5). The new terms involving the bitorsion which appear in (9.5) and 
(9.6) are due to the presence of geometrical electric and magnetic currents 
which occur in the Maxwell equations. 

A reduction of the general results of Theorem 9.1 back to the standard 
RMW formalism can occur as follows. If  the geometrical difference form 
K vanishes, then both S~v and ,~)~a (see Section 4) also vanish and it 
follows from relation (4.6) that G ~  = 0~, .  As a consequence of these 
restrictions, the Einstein-Maxwell equations with geometrical sources given 
in (9.2)-(9.4) reduce precisely to the standard source-free Einstein-Maxwell 
equations, which are, again, those equations encompassed by the usual 
RMW formalism. 

Simultaneously, when the difference form K vanishes, the relations of 
Theorem 9.1 reduce to those of  the standard RMW theorem. In particular, 
the conditions on G ~  for a BAR spacetime, namely (6.3)-(6.5), are now 
restrictions on G~,~ and, moreover, they are the same relations which occur 
in (5.4)-(5.6) for an ARMW spacetime. Next, for this special case, the 
generalized complexion vector Ca~ which occurs in (9.5) reduces in form 
to the standard RMW complexion vector given in (5.8), and the differential 
condition given in (9.1) is therefore the same as that given in (5.7). Note 
that in this special case the new complexion vector d3,, which occurs in 
(9.6) vanishes identically via the doubly contracted Bianchi identities of 
the Riemannian curvature tensor on LM. That is, in this special case the 
new "differential condition," namely that ~fl~, = 0 [see (9.1)], is identically 
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satisfied and imposes no new restrictions on the Riemannian spacetime. 
This is why the new complexion vector d3" never appeared in the standard 
RMW formalism. 

Hence, when the difference form K vanishes, the Einstein-Maxwell 
equations with geometrical sources reduce to the standard source-free Einstein- 
Maxwell equations and, simultaneously, the formalism of Theorem 9.1 reduces 
precisely to the usual R M W  theorem. The vanishing of the difference form K 
also has geometrical significance and we will comment on this in the following 
section. 

A less restrictive reduction, rather than the difference form K vanishing, 
is also possible. First, note that if the bitorsion *O xa vanishes, then S,~ 
need not be zero. This corresponds physically to zero electromagnetic 
sources in the Maxwell equations [that is, (9.3)-(9.4)] while having nonzero, 
nonelectromagnetic sources for the Einstein tensor [see (9.2)]. This special 
case of the coupled Einstein-Maxwell equations with geometrical sources 
is certainly physically reasonable. 

Another intermediate case of interest is less straightforward. The tensor 
S ~  can vanish, while the bitorsion *0  ~a need not be zero. This would seem 
to imply a potential flaw in the theory, as it would allow nonzero electromag- 
netic currents for the coupled Einstein-Maxwell equations which did not 
also appear as gravitational sources in the Einstein equation. However, it 
can be shown that S . .  being zero in conjunction with the conditions that 
~a,, = O~a and ~fl~ = 0 in fact forces the first and second components of  the 

, t~(1)  _ 0 and ~O ~(2) -- bitorsion to vanish, that is, y v - 0. Hence, the generalized 
RMW formalism obeys the empirical relation that electromagnetic currents 
for the coupled Einstein-Maxwell equations with geometrical sources can 
vanish while the nonelectromagnetic gravitational sources do not, but not 
vice versa. 

10. CONCLUSIONS 

The original RMW program provides a geometrization of source-free 
Einstein-Maxwell spacetimes within the arena of standard four-dimensional 
Riemannian geometry. The objective of this paper has been to show that 
the original RMW theory can be extended to include Einstein-Maxwell 
spacetimes with geometrical sources by generalizing the geometrical arena 
to a new principal fiber bundle, namely the bundle of biframes L2M. A 
detailed construction of the biframe bundle, including developments of its 
associated differential geometry, can be found in Hammon and Norris 
(1990b). A review of the main results concerning this geometry was presented 
in Section 2 of this paper. 
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A key geometrical development which allows the above geometrization 
is the introduction of a difference form K on L2M. Indeed, we showed in 
Section 4 that the assumptions of a Riemannian connection one-form on 
LM and a general connection one-form on L2M necessarily imply the 
existence, at least locally, of  a difference form K. Any four-dimensional 
spacetime manifold M, with the previous geometrical assumptions on the 
principal fiber bundles LM and L2M over M, is denoted as a triple 
(M, g, K) ,  where g is the metric tensor. 

The Einstein equation associated with the standard coupled Einstein- 
Maxwell equations with sources [see (1.1)] was geometrized in a natural 
manner within this new geometrical arena. Indeed, we showed in Section 
4 that any given triple (M,g,  K)  necessarily implies the fundamental 
decomposition of  the biframe Ricci tensor G ~  as given in (4.6), namely 

G ~ = ~ v - S ~ ,  (10.1) 

where t3~  is the Riemannian Einstein tensor and S~v is a new difference 
tensor constructed from the metric g, the difference form K, and their 
derivatives. 

The next step taken in this process of geometrization was to extend 
the notion of ARMW spacetimes from the linear frame bundle LM to the 
biframe bundle LZM. This was accomplished in Section 6 by placing the 
algebraic conditions (6.3)-(6.5) on the biframe Ricci tensor G,z , rather 
than the standard relations (5.4)-(5.6) on the Einstein tensor G,~. Any 
triple (M, g, K)  which satisfies the algebraic conditions (6.3)-(6.5) is called 
a biframe algebraic Rainich spacetime (BAR). The notion of  BAR space- 
times in conjunction with the above natural decomposition of the biframe 
Ricci tensor guarantees that the Riemannian Einstein tensor takes the form 
[see (6.7)] 

G~ = ( f ~ f ~  + f*~f*~) + S~ (10.2) 

where f , ,  is now a Maxwell square root of the biframe Ricci tensor G ~ .  
Clearly, this relation is the same form as the standard field equation which 
occurs in (1.1), except all sources are geometrical. The introduction of the 
triples (M,g, K) and the corresponding decomposition of  the Einstein 
tensor as in (10.2) provides a purely geometrical extension of the earlier 
works of  Hammon and Norris (1990a, e). 

The biframe bundle is a natural geometrical arena in which to reformu- 
late and extend the original RMW theory. Indeed, we showed in Section 7 
that each BAR spacetime guarantees an entire equivalence class of extremal 
sections of  L2M *. Furthermore, the concept of duality rotations corresponds 
precisely to special changes of these sections. 
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The Maxwell equations associated with the standard coupled Einstein- 
Maxwell equations with sources, namely (1.2) and (1.3), are geometrized 
in a natural manner  via the bitorsion three-form associated with a given 
connection one-form on the bundle of  biframes L2M. Indeed, we showed 
in Section 8 that the pullback of  the bitorsion structure equation from LM 
to M in any extremal section associated with a given BAR spacetime takes 
the form of  differential bivector identities on M [see (8.1)-(8.2)]. These 
generalized extremal identities are clearly more general than the standard 
RMW extremal field equations which occur in relations (5.12)-(5.13). 

We showed in Theorem 8.1 that suitable restrictions can be made on 
the generalized extremal identities such that they take the form [see (8.6)- 
(8.7)] 

V~f  T M  = ~O a( ' '  (10.3) 

_ , t a x ( 2 )  ( 1 0 . 4 )  V ~fA~ _ f ,_, 
:~(~Aa where .1 are the local components  of  the bitorsion. Furthermore, we 

showed that the above special restrictions are a generalization of the stan- 
dard RMW differential condition. Clearly, relations (10.3)-(10.4) are the 
same form as the standard field equations which occur in (1.2)-(1.3), except 
all currents are geometrized via the bitorsion. Moreover,  we also showed 
that these geometrical sources are conserved as a consequence of the 
bitorsion Bianchi identity. 

Any triple (M, g, K )  which satisfies relations (10.2)-(10.4) is called an 
Einstein-Maxwell  spacetime with geometrical sources. The new geometrical 
objects which play the role of  sources for these coupled equations are the 
bitorsion .| and the curvature difference tensor S,,.. Specifically, com- 
ponents of  the bitorsion play the role of  geometrical currents for the Maxwell 
equations, while Su, represents a geometrization of  all nonelectromagnetic 
sources for the Einstein equation. Both *O xa and S,~ are constructed from 
the difference form K, the metric g, and their derivatives. 

The introduction of  the difference form K on L2M thus allows a 
generalization of  the original RMW theorem to include sources. Indeed, 
the theorem presented in Section 9 provides the necessary and sufficient 
conditions on an arbitrary triple (M, g, K)  in order for this triple to be an 
Einstein-Maxwell  spacetime with geometrical sources. As described above, 
the field equations associated with such spacetimes have the same form as 
those associated with the standard Einstein-Maxwell  spacetimes, except 
that all sources are geometrized. 

A reduction of  the generalized RMW formalism back to the standard 
RMW theory can occur when the difference form K vanishes. This restriction 
has both physical and geometrical significance. The physical significance 
of the vanishing of the difference form K was discussed in Section 9. Indeed, 
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we showed that when the difference form K is zero, the coupled Einstein- 
Maxwell equations with geometrical sources reduce precisely to the standard 
source-free equations associated with Riemannian spacetimes, and, simul- 
taneously, the generalized RMW formalism, as given in Theorem 9.1, 
reduces term by term to the standard RMW theorem. The vanishing of  the 
difference form K also has a geometrical interpretation. Indeed, when the 
difference form vanishes, the geometry on L 2 M  reduces to that which is 
only induced by the Riemannian geometry on LM. This special case helps 
to clarify the intimate relation between the traditional source-free case and 
standard Riemannian geometry. 

A fundamental  question which arises from the generalized RMW 
formalism is the following. Can a specific form for the general objects *O aa 
and S , ,  be chosen, or derived, such that the general Einstein-Maxwell  
equations with geometrical sources reduce to a physically significant form? 
Preliminary results indicate that this is possible. Indeed, these results 
indicate that by adding new algebraic conditions on S . ,  and *O Aa, in addition 
to those already on G,~, it is possible to recover the coupled Einstein- 
Maxwell equations for a charged perfect fluid [see, for example,  
Lichnerowicz (1967)]. This type of  procedure is certainly within the spirit 
of  the original RMW program, as only geometrical algebraic field equations 
are imposed. We hope to comment  on these preliminary results in more 
detail in a future publication. 

A problem which is related to the above is the notion of exact solutions. 
In this paper  we have demonstrated the necessary and sufficient conditions 
on an arbitrary triple (M, g, K )  in order for it to be a nonnull Einstein- 
Maxwell spacetime with geometrical sources. In analogy to the original 
RMW program, these conditions are to be taken as field equations to solve 
not only for the metric g, but also for the difference form K. Presumably, 
each special form for the coupled Einstein-Maxwell  equations, such as the 
charged perfect fluid alluded to above, will have its own specific form for 
K. Can an exact solution for these new field equations be found which will 
permit  a determination of a specific form for the difference form K ? 
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